Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas M. Klapötke,* Burkhard Krumm, Peter Mayer and Ingo Schwab

Department of Chemistry and Biochemistry, Ludwig-Maximilian University, Butenandtstrasse 5-13 (Haus D), D-81377 Munich, Germany

Correspondence e-mail:
tmk@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.029$
$w R$ factor $=0.064$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetrapyridinium di- μ-oxo-bis[trifluorotellurate(IV)] bis[pentafluorotellurate(IV)]

The title compound, $2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{TeF}_{5}{ }^{-} \cdot 0.5 \mathrm{Te}_{2} \mathrm{~F}_{6} \mathrm{O}_{2}{ }^{2-}$, contains two anions, $\left[\mathrm{TeF}_{5}\right]^{-}$and $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$. The $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anions are involved in $\mathrm{H} \cdots \mathrm{F} / \mathrm{O}$ bonding with the pyridinium cations. Crystallographically imposed inversion leads to molecular C_{s} symmetry for the $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anions. Extended chains of inversion-related pyridinium cations are built up by $\pi-\pi$ interactions.

Comment

During our recent investigations (Klapötke et al., 2003) on binary covalent tellurium azides, a stabilization of the tetraazide $\mathrm{Te}\left(\mathrm{N}_{3}\right)_{4}$ as a pyridine adduct was desirable. Adducts of TeF_{4} with Lewis bases L have been reported ($L=\mathrm{Me}_{3} \mathrm{~N}$, dioxane, bipyridine and tetramethylethylenediamine), but apart from elemental analysis, no analytical information has been obtained (Greenwood et al., 1966). In order to confirm the suggested formulae $\left[L \mathrm{TeF}_{3}\right]\left[\mathrm{TeF}_{5}\right]$ for these adducts, further analytical information on the ionic compounds was necessary. An initial X-ray structure determination of the colorless crystal, obtained by reaction of excess pyridine (py) with neat TeF_{4} at room temperature was believed to be $\mathrm{py}_{2}\left[\mathrm{Te}_{2} \mathrm{~F}_{8}\right][\mathrm{pyH}]_{2}\left[\mathrm{TeF}_{5}\right]$ (Klapötke et al., 2003). For several reasons, this turned out to be rather unlikely.

First, this would imply a connection pattern different from that in crystalline TeF_{4} (Edwards \& Hewaidy, 1968; Kniep et al., 1984). While the latter features polymeric chains (F -$\mathrm{TeF}_{3}-\mathrm{F}-\mathrm{TeF}_{3}-$), with the apical F atoms connected in the so-called $\mathrm{Te}_{2} \mathrm{~F}_{8}$ dimer, the two TeF_{4} units would be associated through both basal and apical F atoms. This dimeric arrangement has only once been mentioned in the literature in the course of a theoretical treatment (Martynyuk et al., 1999). Quantum chemical calculations then showed a poor agreement with the structure determination: both at DFT (density functional theory) and MP2 levels the separation distance of the two TeF_{4} moieties is much larger than in the crystal.

Second, closer inspection of the crystal structure reveals that, on all N atoms of the pyridine rings, H atoms can be located, resulting in pyridinium cations. The charge problem resulting from this fact is easily resolved when the bridging F atoms (F4) are replaced by O atoms. Both displacement

Received 12 July 2005 Accepted 8 August 2005 Online 17 August 2005
\qquad

Figure 1
The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
parameters and R values refine favorably. Furthermore, quantum chemical investigations match to a much higher degree compared to $\mathrm{Te}_{2} \mathrm{~F}_{8}$.

Hence, it has to be concluded that the crystal structure, in fact, contains the $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anion (Fig. 1), changing the composition to $[\mathrm{pyH}]_{4}\left[\mathrm{TeF}_{5}\right]_{2}\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]$. The $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anion has also been found in the potassium salt $\mathrm{K}_{2}\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]$, reported as KTeOF_{3} (Kessler \& Jansen, 2001). The formation of the crystals described here can be explained by slow partial hydrolysis of two molecules of $\left[\mathrm{TeF}_{5}\right]^{-}$to form $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ after extended periods.

In contrast to the previously reported crystal structure of $\mathrm{K}_{2}\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]$, in the present case, hydrogen bridging between $[\mathrm{pyH}]^{+}$cations and $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anions is found, with $\mathrm{H} \cdots \mathrm{O} / \mathrm{F}$ distances between 1.99 and $2.36 \AA$. In contrast to $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{TeF}_{5}\right]^{-}$anions in ammonium pentafluorotellurates (Mahjoub et al., 1992), the $\left[\mathrm{TeF}_{5}\right]^{-}$anions participate in intermolecular interactions, with a $\mathrm{Te} 2 \cdots \mathrm{~F} 8^{\mathrm{ii}}$ distance of 3.151 (2) \AA [symmetry code: (ii) $x, 1.5-y, \frac{1}{2}+z$]. Additionally, pairs of inversion-related pyridinium cations show $\pi-\pi$ interactions, forming extended chains in the crystal structure.

The structural parameters of the $\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{2-}$ anion in the crystal structure are slightly different from those reported previously (Kessler $\mathrm{O}=1.900$ (2) versus 1.906 (3) \AA, $\mathrm{Te} 1-\mathrm{O}^{\mathrm{i}}$ $=2.119$ (2) versus 2.048 (3) \AA, $\mathrm{Te}-\mathrm{F}=1.964$ (2)-2.007 (2) versus 1.990 (3)-2.061 (2) $\AA, \mathrm{Te} \cdots \mathrm{Te}^{\mathrm{i}}=3.1803$ (4) versus 3.1076 (5) \AA]. The square-pyramidal structure of the $\left[\mathrm{TeF}_{5}\right]^{-}$ anion is in accordance with those found in ammonium pentafluorotellurates, with $\mathrm{Te}-\mathrm{F}_{\text {apical }}=1.859$ (6)/1.867 (2) \AA and $\mathrm{Te}-\mathrm{F}_{\text {basal }}=1.937$ (6)-1.975 (3) \AA (Mahjoub et al., 1992).

Experimental

A suspension of $\mathrm{TeF}_{4}(1.0 \mathrm{mmol})$ in dry pyridine $(5 \mathrm{ml})$ was stirred for 12 h under argon. All volatile material was then pumped off in vacuo. Slow crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded, after several months, $[\mathrm{pyH}]_{4}\left[\mathrm{TeF}_{5}\right]_{2}\left[\mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}\right]$ as colorless crystals, probably as a result of partial hydrolysis.

Crystal data

$2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{TeF}_{5}{ }^{-} \cdot 0.5 \mathrm{Te}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}{ }^{2-}$
$D_{x}=2.473 \mathrm{Mg} \mathrm{m}{ }^{-3}$
$M_{r}=583.42$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
Cell parameters from 35743
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=3.81 \mathrm{~mm}^{-1}$
$T=200$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: numerical
(X-RED 32 and X-SHAPE; Stoe
\& Cie, 1997)
$T_{\text {min }}=0.350, T_{\text {max }}=0.690$
36947 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.064$
$S=1.08$
3586 reflections
208 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 3586 \text { independent reflections } \\
& 2948 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.073 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-26 \rightarrow 26 \\
& l=-10 \rightarrow 10 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0306 P)^{2}\right. \\
& \quad+0.478 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.00 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.10 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Te} 1-\mathrm{O}$	$1.900(2)$	$\mathrm{Te} 2-\mathrm{F} 8$	$1.870(2)$
$\mathrm{Te} 1-\mathrm{F} 3$	$1.964(2)$	$\mathrm{Te} 2-\mathrm{F} 7$	$1.937(2)$
$\mathrm{Te} 1-\mathrm{F} 2$	$1.998(2)$	$\mathrm{Te} 2-\mathrm{F} 4$	$1.949(2)$
$\mathrm{Te} 1-\mathrm{F} 1$	$2.007(2)$	$\mathrm{Te} 2-\mathrm{F} 6$	$1.956(2)$
$\mathrm{Te} 1-\mathrm{O}^{\mathrm{i}}$	$2.119(2)$	$\mathrm{Te} 2-\mathrm{F} 5$	$1.969(2)$
$\mathrm{Te} 1-\mathrm{Te} 1^{\mathrm{i}}$	$3.1803(4)$		
$\mathrm{O}-\mathrm{Te} 1-\mathrm{F} 3$	$83.21(10)$	$\mathrm{F} 7-\mathrm{Te} 2-\mathrm{F} 4$	$87.25(10)$
$\mathrm{O}-\mathrm{Te} 1-\mathrm{F} 2$	$85.08(9)$	$\mathrm{F} 8-\mathrm{Te} 2-\mathrm{F} 6$	$80.77(11)$
$\mathrm{F} 3-\mathrm{Te} 1-\mathrm{F} 2$	$86.18(8)$	$\mathrm{F} 7-\mathrm{Te} 2-\mathrm{F} 6$	$86.94(10)$
$\mathrm{O}-\mathrm{Te} 1-\mathrm{F} 1$	$84.17(9)$	$\mathrm{F} 4-\mathrm{Te} 2-\mathrm{F} 6$	$160.75(11)$
$\mathrm{F} 3-\mathrm{Te} 1-\mathrm{F} 1$	$87.64(9)$	$\mathrm{F} 8-\mathrm{Te} 2-\mathrm{F} 5$	$79.79(11)$
$\mathrm{F} 2-\mathrm{Te} 1-\mathrm{F} 1$	$168.16(8)$	$\mathrm{F} 7-\mathrm{Te} 2-\mathrm{F} 5$	$161.35(12)$
$\mathrm{F} 8-\mathrm{Te} 2-\mathrm{F} 7$	$81.57(11)$	$\mathrm{F} 4-\mathrm{Te} 2-\mathrm{F} 5$	$89.67(10)$
$\mathrm{F} 8-\mathrm{Te} 2-\mathrm{F} 4$	$80.22(11)$	$\mathrm{F} 6-\mathrm{Te} 2-\mathrm{F} 5$	$89.99(10)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}$	0.88	1.88	$2.752(3)$	175
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~F} 2$	0.88	2.24	$2.837(4)$	125
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~F}^{\mathrm{i}}$	0.88	2.09	$2.859(4)$	146

Symmetry code: (i) $-x+1,-y+1,-z+1$.

H atoms were placed in geometrically idealized positions $(\mathrm{N}-\mathrm{H}=$ $0.88 \AA$ and $\mathrm{C}-\mathrm{H} 0.95 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The highest residual electron density is located $2.53 \AA$ from Te1 and $1.51 \AA$ from F3. The deepest hole is located $0.89 \AA$ from atom Te1.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997);

organic papers

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

The authors thank the Fonds der Chemischen Industrie and the Ludwig-Maximilian University for financial support of this work.

References

Brandenburg, K. (1996). DIAMOND. University of Bonn, Germany Edwards, A. J. \& Hewaidy, F. I. (1968). J. Chem. Soc. A, pp. 2977-2980
Greenwood, N. N., Sarma, A. C. \& Straughan, B. P. (1966). J. Chem. Soc. A, pp. 1446-1447

Kessler, U. \& Jansen, M. (2001). Z. Anorg. Allg. Chem. 627, 1782-1786.
Klapötke, T. M., Krumm, B., Mayer, P. \& Schwab, I. (2003). Angew. Chem. Int. Ed. 42, 5843-5846.
Kniep, R., Korte, L., Kryschi, R. \& Poll, W. (1984). Angew. Chem. Int. Ed. Engl. 23, 388-389
Mahjoub, A. R., Leopold, D. \& Seppelt, K. (1992). Z. Anorg. Allg. Chem. 618, 83-88.
Martynyuk, E. G., Pashinnik, V. E., Markovskii, L. N. \& Kachovskii, A D. (1999). Russ. J. Gen. Chem. 69, 1273-1276.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). X-RED32 (Version 1.09) and X-SHAPE (Version 1.02). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

